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Non-iterative solutions of the Bethe-Salpeter equation in a 
model with non-canonical propagators 

W Kaase 
Fakultat fur Physik, Universitat Bielefeld, D-4800 Bielefeld 1, Federal Republic of Germany 

Received 27 July 1987, in final form 2 December 1987 

Abstract. in  a planar approximation to a Yukawa-type g$*$cp field theory with scalar 
fields JI and cp we study the Bethe-Salpeter (BS) equation for the scattering amplitude of 
the field in the case of vanishing $ wavefunction renormalisation constant Z, = 0. Due 
to the asymptotic behaviour of the non-canonical $ propagator, given by the corresponding 
Dyson-Schwinger equation for Z, = 0, the Neumann series of the BS equation diverges for 
Euclidean values of the invariants and all masses m2, f i 2  > 0. Being respo. ,,ole for this 
divergence, only the asymptotic part of the propagator is subsequently retained in the BS 
equation. Using in Euclidean metric an exactly soluble high-energy version of the BS 
equation and treating the difference as a perturbation, we derive a new but equivalent 
integral equation for the scattering amplitude. By contraction-mapping arguments we 
obtain existence and multiplicity results for solutions of ths transformed equation. The 
asymptotic behaviour of these solutions is rigorously established and found to be oscillating. 

1. Introduction 

The development of non-perturbative methods in quantum field theory is highly 
desirable in view of the deficiencies of the usual perturbation expansion, which become 
apparent, e.g., in the treatment of bound-state problems, spontaneous symmetry break- 
ing and dynamical mass generation, Regge behaviour, etc. By formally summing up 
suitable infinite subclasses of the Feynman diagrams of a renormalisable Lagrangian 
quantum field theory (RQFT) one may end up with a simplified system of integral 
equations for Green functions. These equations often satisfy Lorentz covariance, 
analyticity, Lehmann spectral representation and other general requirements of QFT. 
In many approximation schemes the two-particle-irreducible four-point function 
(= Bethe-Salpeter kernel, hereafter symbolised by a ) plays an essential role as it 
permits the formulation of a closed system of integral equations for the lower n-point 
functions ( n  d 4). Specifically in the simple case of a Yukawa-type interaction of scalar 
fields IC, and gc with L,=g$*+p, the Dyson-Schwinger equation for the propagator 
and the Bethe-Salpeter (BS) equation for the scattering amplitude (symbolised by a) 
form a coupled system of integral equations, which is completely defined once the BS 
kernel or some approximation of it is given. In spite of the neglect of spin and of 
some deficiences of the Yukawa theory, such as the presumable non-existence of a 
ground state, the model is expected to yield at least a qualitative description of 
nucleon-nucleon interaction phenomena. In graphical notation these equations are: 

0305-4470/88/071607 + 15$02.50 @ 1988 IOP Publishing Ltd 1607 
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with 
= dressed I) field propagator 

_jc_ = derivative WRT the momentum of the I) line. 

A simple way to derive the propagator equation (1.1) is by application of the Ward 
identity to the one-photon vertex function after introduction of a minimally coupled 
electromagnetic field A, [ l ,  21. The simplest approximation to equations (1.1) and 
(1.2) is obviously the substitution of the complete BS kernel by its one-particle exchange 
contribution: 

1 
I 
I (1.3) Q -  I 

(- - - - = free (p field propagator). 
This approximation corresponds to the summation of ladder graphs with I) propa- 

gators (side lines of the ladder) determined by the solutions of the one-particle exchange 
version of (1.1). 

In contrast to previous work on similar models [3-51 we consider here only the 
non-canonical case of vanishing 4 wavefunction renormalisation constant Z2 = 0. In 
axiomatic field theory it can be argued that under some general assumptions a non-trivial 
field theory will have to be a non-canonical one [6]. The same conclusion holds for 
field theories represented as fixed point solutions of the renormalisation group transfor- 
mation [7]. 

From a more physical point of view the condition Z2 = 0 has been suggested for a 
class of models as a criterion for the composite nature of the corresponding field (or 
particle) [ 81. 

This bound-state condition has found an interesting application to bosonic bound 
states appearing in composite models of quarks, leptons, the intermediate vector bosons, 
etc, constructed in recent years in an attempt to reduce the number of fundamental 
particle states entering the theory [9]. We finally mention that the condition Z 2 = 0  
for all fields of a given field theory is the main assumption of the so-called bootstrap 
hypothesis advocated by several authors [lo] in an effort to abolish the difference 
between elementary and composite particles. 

2. Summary of basic results for the propagator 

Before investigating the scattering amplitude we state for later reference some basic 
properties of the two-point function. The Dyson-Schwinger ( DS) equation for the 
propagator A of the scalar 4 field in the approximation (1.1) is given by?: 

- 1 
( p  - k ) 2 + p 2 - i &  ($-  k)’+ p 2 - i s  

A d 4 k (  
~ - ~ ( p ’ ) = ~ ~ ( p ’ + m ~ ) + , i  

5? 

(2.1) 
with A := ~ ~ g ’ / ( 2 . i r ) ~ ,  $’= -m’. 

tour metricis ( g M v ) = ( - l , l , 1 , l ) .  
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For p2>  0, Z2 is fixed by the on-shell normalisation condition 

res A( p2)(p2,-m2 = 1. (2.2) 

(For p2  = 0, off-shell normalisatsion is necessary.) Without consideration of the 
normalisation condition (2.2) the (DS) equation (2.1) was first treated by Saenger [ 1 I]. 

We consider here only the case 2, = 0, which determines a critical coupling constant 

For 2, = 0 the DS equation (2.1) is known to have a unique solution for all masses 
m 2 ,  pz  3 0, which fulfils the Lehmann spectral representation [12,13]. For s := p z  2 0 
this solution satisfies upper and lower bounds of the form [13]: 

A = Ao. 

where 

and 

(2.3) 

For m2 = 0 the exact asymptotic behaviour of A(s) for s + cx) is given by (cf [ 121): 

For m 2 >  0 we suppose that the same asymptotic relation holds but a proof of this 
conjecture is still missing. 

3. Divergence of the Bethaalpeter Neumann series 

We now consider the BS equation for the scattering amplitude 

P-0’  0‘ 

P - Q  Q 
in the one-particle exchange approximation: 

xA((s  - 0 ) 2 ) A ( ( ~  - Q ’ ) ’ ) U s ;  0, 0’) 
A being the solution of equation (2.1). 
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For Euclidean external momenta (i.e. taking po  = ip4, p4 E R, etc) we may Wick-rotate 
the integration contour in any term T,, of the formal Neumann series of the BS equation 
(3.1). After Wick-rotation T,, is a 4n-fold Euclidean integral, whose integrand turns 
out to be posifiue. Exploiting this positivity condition, a lower bound Tk for T,, is 
obtained by replacing the propagator A by its lower bound A, given in (2.4). Defining: 

the following integral representation (sometimes called the Okubo-Feldmann rep- 
resentation [14]) holds for x,,: 

X n ( S ,  p : ,  p : ;  7 )  

= JOm dx dy dzz2fn(x, y ,  z; 7 )  

This representation has already been used in the case of canonical propagators in [3-51. 
For the weight function f,, we have found the following lower bound [ 131: 

ffl(x, y ,  z ;  7 )  3- -- :"z e ( ( A I 1 ) "  

x{C, e x p [ - ( l + l / A ) ~ ] ) "  
l n 2 " ( l + t )  
n ! ( n  + l ) !  (3.4) 

with 

5 := min( x, y )  

B := max(p', l 2 + + t ,  Q2+ l', Q'*+ 1 2 )  

A, E > 0 arbitrary positive real numbers. 

The bound (3.4) for f,, implies 

CY+' (3.5) 
e x p [ - ( l + l / A ) ~ ]  

n ! ( n  + l)! 

with E,  > E and 

1 6 ~  
B2 

Go:= - exp{ - [ E(S  + k 2 )  + p ; + p i +  2Z2)]/B}. 

Since 4C, = $C;,,2 > 1 for P, 1' properly chosen (cf (2.4)), the divergence of E,, x,, follows 
from (3.5) by making a suitable choice of the parameters A, E. 

We remark that this divergence is due to the non-canonical asymptotic behaviour 

A( S )  = O( s-"') for s+m 

of the propagator as well as the particular coefficient 4: appearing in front of s-"' as 
given in (2.6). 
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If we take for A, e.g., the expression 

the Neumann series of the BS equation (3.1) would be convergent in a non-empty 
domain of the mass and momentum variables. 

4. Existence of non-iterative solutions 

Since the asymptotic behaviour (2.6) of the I/, propagator A is responsible for the 
divergence of the Neumann series of the BS equation (3.1) we retain in the following 
only its asymptotic term 

with a free mass-like parameter 1’ in the Bethe-Salpeter equation. In this way we get 
for Euclidean 4-vectors instead of the BS equation (3.1) the following simplified integral 
equation: 

(4.2) 

with 
To( P) := g:/  ( P’ + F’). 

Q = - Q  I -  =- :q 
Restricting ourselves tot  

we obtain after angular integration in the simplified BS equation (4.2) 

T (  r, x ;  t )  = To( r )  + Iom dr’ [: dx’  K ( r ,  x ,  r‘ ,  x’;  t )  T (  r ’ ,  x ’ ;  t )  (4.3) 

t Under this condition only s-wave scattering occurs. 
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The dependence of T (  r, x; t )  on the angle x is taken into account by the following 
Gegenbauer expansion: 

(4.4) 

Because of the symmetry ,y + n -x of (4.3) we take tzft l  = 0, 1 = 0 , 1 , .  . . . . To ensure 
the absolute convergence of the integral in (4.3), we impose the following sufficient 
condition on the t z r :  

(4.5) 

A solution of (4.3) of the form (4.4) satisfying condition (4.5) will hereafter be referred 
to as an &-solution of (4.3). 

We remark that the set of all &-functions is not mapped into itself by equation 
(4.3). Insertion of (4.4) into (4.3) leads to the following system of integral equations 
for the f 2 k :  

5 

t2k(r; t )  = TO(r)8kO+ f K k f ( r ,  s; t ) f 2 f ( S ;  t )  d s  k = 0 ,  1 , 2 , .  . . (4.6) 
f = O  0 

with 
22 k +  1 kS k 3 1  

*- - - Kkf(r' 
'- 2~ 2k+ 1 { i +  s + p 2 + [ ( r +  s+p2)2-4r~]1 /2}2k+1 

z:=(s+a)2/s t  a := 1 2 +  t/4. 

Equations (4.3) and (4.6) are equivalent in the sense that they have the same &- 
solutions. Using condition (4.5) and the bounds (A1.3) and (A1.4) for Qk-112, it is 
straightforward to show that t 2 k (  r ;  t )  is continuous in r for r > 0 and V k  E No and that 

(4.7) 

for any &-solution ( f 2 k ) k c N 0  of (4.6). Since the kernels Kkl(r, s; t )  with (k, I )  # (0,O) 
fall off faster than Koo( r, s;  t )  for r + 00 and s + 00, we expect Koo to be responsible 
for the divergence of the Neumann series. Using for Koo the asymptotic expression: 

3 1 S 
Kas( r, s )  := - 

2 r + s + l r - s l  s + a  

we rewrite the to equation of (4.6) by subtracting on both sides the asymptotically 
most singular term Kastot: 

(4.9) 

+For  any kernel K ( x , y )  we use the notation ( K f ) ( x ) = j K ( x , y )  f (y )  dy for the induced integral 
operator K. 
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From (4.9) we conclude formally that the following relation holds: 

to = (1 - Ka,)-I T,+ (1 - K J ' (  K,, - Ka,)to+ (1 - K J '  KO&, . 
(i:l 1 (4.10) 

Transformations of this type appear in the mathematical literature, e.g., in Krasnoselskii 
[15] in a general framework and in Michlin and Prossdorf [16] in the context of 
singular intgral equations. Cosenza et a1 [ 171 applied a similar technique to the case 
of a singular (homogeneous) Bethe-Salpeter equation to get a transformed equation 
of Fredholm character. This transformation enables the authors to extablish analyticity 
properties of the bound state condition. The existence of solutions to the transformed 
equation is, however, not shown. 

To give a rigorous meaning to equation (4.10) we have to construct the inverse 
operator of 1 - K,, . This is done in the following 

Lemma 4.1. Let g( * )  be continuous on (0, CO) and satisfy the condition: 

(4.11) 

Then: 

(4.13) 

where Pt, Q!, are associated Legendre functions. 

Roo$ Under the conditions on g stated in the lemma, the integral equation 

( 1 - Kas)  CP = g 

is equivalent to the following singular Sturm-Liouville boundary-value problem for 
the function $(x):= x(cp(x) - g(x)): 

x(x+a)$"(x)+j+L(x) = - ixg(x) 

$ ( O )  = 0 $' (CO) = 0. 

By standard methods [18] the general solution to (4.14) is found to be: 

(4.14) 

(4.15) 

with A ER. 
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In (4.15) I+!I~ are a fundamental system of solutions of the homogeneous 
equation of (4.14), for which we may take: 

+,(x) =[x(x+a)] l12Pt( l+2x/a)  

+2(x)=[x(x+a)] l ’2  Re Qt( l+2x /a )  
(4.16) 

- 
with v := -;+.if. Going back from + to 9, the statement of the lemma follows. 

Using the inequalities for P t ,  Qt given in appendix 1 we obtain the following useful 
bound for R,: 

(8 + T’)’/’(X + a)’/ ’  Y 3 / 2  

X ( y  + a)3’2. 
(4.17) 

Application of the estimates (4.7), valid for &-solutions of (4.6), and of the bound 
(A2.3) for IKoo(x, y )  - K,,(x, y)I to the function 

L13 

g =  ~ o + ( K o o - ~ a , ) f o +  c K o r f z r  
I=l  

implies in view of lemma 4.1 the following theorem. 

Theorem 4.2. i = ( f 2 k ) k s N o  is an A,-solution of (4.6) if and only if 3 A e R  such that 
f 2 k  = f?k with iA = ( f 2 k ) k . N ”  an &-solution of the system: 

Heuristic considerations of system (4.18) lead us to expect an inequality of the form 

to be valid for k = 1 , 2 , .  . . for any solution t 2 k  of (4.18). For to it can be shown that 

for &,-solutions I=  ( t o r  t2, t 4 , .  . .). 

on ( 0 , ~ )  we define: 
This motivates the following definitions. For I:= ( t o ,  t 2 ,  t 4 , .  , .) with r 2 k  continuous 

F, := (ill1 f1Ii <CO} 

with 

(4.19) 
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and the weight functions: 
X 

gb"( x )  := gY' (  x )  := 
u " ~ ( x +  

(4.20) 

g(k2'(x) := 1 k = 1,2, . . . . 

One obviously has Fl c F2.  

estimates (4.7) for f 2 k ,  k s  1 and (4.17) for E, applied to the to equation of (4.18). 
Every &-solution of (4.18) is contained in F2 as can be seen by means of the 

We now define an operator K, which acts on the sequences i, in the following way: 

(4.21) 

We consider the operator on the spaces F1 and F2,  

Lemma 4.3. I? is a bounded operator in the Banach spaces Fl and F2.  The respective 
norms satisfy the following estimates. 

d ( l ) (  y, E )  := do( + C , E (  1 +qE)-3/4[1 + &/ (4+  

do( y)  := y-'[a, + a, in( 1 + yl/')] 

D"'( E )  := ;( 1 + : ~ ) " ~ [ 2  + ~ ' / ( 4 +  E ) ' ]  

(4.22) 

(4.23) 

(4.24) 

(4.25) 

the constants have the values a, := 3.609. . . , a2 := 11.237 , . . and cl := 4.045 . . . . 
(ii) IIRI12s max(d2'(y,  E), D(* ' (E) )  (4.26) 

(4.27) 

(4.28) 

with 
d'2'( y, E )  := do( y )  + C'E( 1 +$E)-3'4 

D ( 2 y E )  :=;(I +qE)1/4[1 +6&/ (4+ 4 1  
where c2 := 11.659 . . . . The proof of lemma 4.3 is given in appendix 2. 

Applying the contraction mapping principle to the system (4.18), the following theorem 
is an immediate consequence of lemma 4.3. 

Theorem 4.4. (i)  Let ~ 3 2 3 . 5 ,  E <(1 -d0(y))/4.12 (=domain 5Bl). Then for V A E R  
system (4.18) has in F1 exactly one &-solution f A  = ( f Z \ k ) k s N o .  

(ii) For y 3 23.5, E < (1  - do( y))/  11.66 (= domain B2), no further &-solutions of 
(4.18) (other than those stated under ( i ) )  exist. In this case the one-parameter family 

a2 

T A ( r ,  x; t )  = c f td r ;  r)C:/(cos x) A € R  
I =o 

contains all &-solutions of (4.2). 
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5. Asymptotic behaviour 

In the Bjorken limit r + 00 we specify the exact asymptotic behaviour of the solutions 
given in theorem 4.4. This limit is of particular importance in the analysis of deep- 
inelastic electron-hadron scattering [ 11. 

Theorem 5.1. Let (7, E )  E 

BS equation (4.2) as specified in theorem 4.4(i). Then for r + CO: 

and T = TA for A E R be the &-solution of the simplified 

TA( r, X ;  t )  = (t) 1'2 [Al sin (A In :) + A 2  cos ($ In :)] + O( 1/ r ) .  

with 

ffC PC AI :=-tan (z) -PA A,:= aA+-tan 
a d2 a 

m 

I= 1 
g := To + (KO0 - K a J  t," + c Kerf;: 

provided that AI and A2 do not vanish simultaneously. 

( 5 . 3 )  

Prooj Since ic F1 for the solution i=  iA of (4.18) considered here, we have for 
TR := TA - to the estimate: 

This shows that to is the leading term of TA for r -* 00 if to falls off less fast than l / r .  
Taking account of (4.18), we conclude that to satisfies the equation: 

to = AV''' + g + Rag 
with g as in ( 5 . 3 ) .  For r + CO we have: g ( r )  = O( l / r ) .  This implies: 

with C given by ( 5 . 2 ) .  The desired result now follows from the well known asymptotic 
behaviour of Pi and 0; [19]. 

For A = 0 one can show that [13]: 

c<o for ~ 2 8 6 . 5 ,  ~ < ( l - - ~ ( y ) ) ( l - S ( y ) ) / 1 2 . 8  

with 

where B := 6.491 . . . and do is as given in (4.24). 
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We remark that the oscillatory behaviour of all solutions of the simplified BS 

equation (4.2) for Q = Q’ = 0, y 2 86.5, implies the divergence of the Neumann series 
of this equation in the above y range, thus confirming the results of 0 3. 

6. Conclusions and outlook 

By means of a transformation technique we have converted in Euclidean metric the 
BS equation of a specific model with divergent Neumann series into an equivalent 
integral equation, which defines a contractive mapping in a suitable Banach space. 
Having thus solved the existence and multiplicity problem, the asymptotic behaviour 
of the solutions in the Bjorken limit could then be exactly specified. This result is due 
to the fact that the above-mentioned transformation extracts the asymptotically 
dominant part from the integral kernel. We expect this technique to be applicable 
also in many other models. 

Treating the Regge limit instead of the Bjorken limit is much more involved since 
this limit invokes not only Euclidean 4-vectors. We have so far not succeeded in giving 
the exact leading term in this limit. 

We finally remark that our model has the unpleasant property of not providing a 
unique solution for the off-shell scattering amplitude. One may try to overcome or at 
least to reduce this non-uniqueness by imposing some additional requirements on the 
scattering amplitude, such as, e.g., the validity of dispersion relations. Whether any 
of the given solutions will fulfil such relations with correct threshold properties is, 
however, not known and remains to be investigated. 
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Appendix 1. Inequalities for Legendre functions 

We list some elementary estimates of Legende functions which we have used in our 
calculations but which do not occur in the standard literature. As they follow in an 
obvious manner from the corresponding integral representations, we give no proof here. 

We have for x>O, U:= -++ id$  

(Al.1) 

(A1.2) 



1618 W Kaase 

a n d f o r z > l ,  k = l , 2 ,  . . .  wehave 
- k  

Qk-l/2(2Z - 1 )  z Q-I/2(2Z - 1 )  (A1.3) 

(Al.4) 

where the definitions 

2 := ( y  + a)2/yt E := t /  12 a := 12+t/4 

have been used in (A1.4). 

Appendix 2. Proof of lemma 4.3 

Due to limitations of space, we omit technical details, which the reader can find in [ 131. 
(i) The estimate 

1 1  I? 11 , s max( N;”, N ! ’ ) )  (A2.1) 

is obviously valid if we define IVY’ and N\’) as follows: 

Ivy:= no+ n, + ny1 

with 

(A2.2) 

In (A2.2) we have made use of the bound (4.17) of R , ( x , y ) ,  the estimates (A1.3) 
and similarly for n y )  and k;’ ) .  

and (A1.4) for Qk-1,2, and the inequality 

(A2.3) 

3 P 2  1 Y 
K o ( x * y ) : = 2  x + y + J x - y l  I x - y l + p Z  y + a  

K , ( x , y ) : = ; ( l + $ ~ ) ~ ’ ~  t Y 2  
X + Y +  Ix -A ( Y +  a ) 3  

ko,  k ,  and k:” are the contributions of KO, K ,  and of X.;“=, Kort2,, respectively, in the 
to equation of (4.18) to the norm / lKlll .  Explicitly we have the following definitions 
and estimates: 
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t 

x + a  
C(l+a&)1’4- (A2.5) 

(A2.6) 

Inserting these estimates into (A2.2) we obtain the following bounds for no, n ,  and n:”: 

(A2.7) n o s  y - ’ [ a ,  + a2 l n ( l + f i ) ]  = do( y )  

with a,=3.609 . . . ,  a2=11.237 . . .  
n , S  c , ~ ( l + a s ) - ~ ’ ~ = :  d,(&j  (A2.8) 

n y )  s &,E2( 1 + : E ) - ” ~ = :  d y ) ( & )  (A2.9) 

with c, := 4.045 , . , . 
Combining these estimates yields the following inequality for Nil’: 

N y j s  d,( y )  + d , ( & )  + d:L’( & )  

=: d ” ) (  y, E ) .  (A2.10) 

N;’) ,  which takes into account the contribution to IIK 1 1 ,  of the t2k equations of (4.18) 
for k 2 1, is defined and estimated as follows: 

=: D(l ) (&) .  (A2.11) 

This proves part (i) of the lemma. 
(ii) The estimate 

1) IZ ] I 2  G max( N;”, N:”) 

holds if we define 

N;~’ :=  n o +  n ,  + n:” 

with 

(A2.12) 

( A2.13) 

n$2’ ._ .-SUP I / 2  ki2’(x) + ($)3’2( 8 + T ’ ) ’ ’ ~  dyal/2(y+a)3/2 ki2’(y) (A2.14) 
X 

x > o  a ( x + a ) ” 2  
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This implies that 
n:”< C ; & ( l  + f e ) - 3 / 4 = .  . d‘2’ 2 ( E )  

with ci := 7.614. .  . . , and 

NY’C do(-y)+c2~(1 d ( 2 ’ ( y ,  E )  

with c2 := 11.659 . . . . 
The definition and upper bound of NI2’ are given by 

k € N  

=: D‘2’( E ) .  

This completes the proof of lemma 4.3. 

(A2.15) 

(A2.16) 

(A2.17) 

(A2.18) 
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